Discrete Approximation of Feasible Sets and Direct Methods for Optimal Control Problems with State Constraints

نویسندگان

  • Benjamin Hell
  • Robert Baier
چکیده

Acknowledgements: At this point I would like to thank Prof. Frank Lempio for his great support for this diploma thesis and the whole time of my studies at the university of Bayreuth. I am also very greatful for the great amount of time Robert Baier spent with me on talking about the content of this article and a lot more. It has really been a pleasure for me to work with him and I hope this will continue sometime in the future. Additionally my thanks go to Jürgen Pannek, who has been a great help for the programming part of this thesis. Thank you all. ODE: ordinary differential equation OCP: optimal control problem DI: differential inclusion DIC: constrained differential inclusion DDI: discrete differential inclusion DDIC: constrained discrete differential inclusion

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of Bang-Bang Optimal Control Problems by Using Bezier Polynomials

In this paper, a new numerical method is presented for solving the optimal control problems of Bang-Bang type with free or fixed terminal time. The method is based on Bezier polynomials which are presented in any interval as $[t_0,t_f]$. The problems are reduced to a constrained problems which can be solved by using Lagrangian method. The constraints of these problems are terminal state and con...

متن کامل

Optimal Finite-time Control of Positive Linear Discrete-time Systems

This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems

In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...

متن کامل

MULTI-OBJECTIVE OPTIMIZATION WITH PREEMPTIVE PRIORITY SUBJECT TO FUZZY RELATION EQUATION CONSTRAINTS

This paper studies a new multi-objective fuzzy optimization prob- lem. The objective function of this study has dierent levels. Therefore, a suitable optimized solution for this problem would be an optimized solution with preemptive priority. Since, the feasible domain is non-convex; the tra- ditional methods cannot be applied. We study this problem and determine some special structures related...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010